
Corus Interoperability Specification

 www.sapia-oss.org

Introduction

The current document describes Corus's interoperability protocol, that
allows external processes to be federated under the responsibility of a
corus server.

Process Life-Cycle

External processes are launched through a corus server, and are thereafter
responsible for signaling their presence to the server at a predefined
interval. The protocol described in this document explains the interactions
between corus-activated processes and their corus server.

Launch

Upon its exec command being called, a corus server will launch a given
process, by dynamically calling the executable that launches the process in
question. At that point, the corus server passes the following properties
(through -D options) to the executable's command-line:

Property Description

corus.server.host Specifies the host of the corus server that started the
process; this is somewhat redundant, since the host is
necessarily the same as the one on which the started
process “lives” - coruss cannot start processes on other
machines. Yet, the property is provided for the sake of
consistency.

corus.server.main.port The “main” port of the corus server that is starting the
process. This port is the one on which the client console
connects. It is also the port that is used to have access
to Corus's built-in naming service.

corus.server.http.port The port on which the corus's HTTP service listens. This
is the port used by remote processes to send XML
messages to their corus server.

© www.sapia-oss.org 2003-2006 2

file:///home/yduchesne/dev/sapia/corus/tags/fs0004-maven/modules/server/doc/text/corus.server.host

Property Description

corus.distribution.name The name of the distribution to which the process
“belongs”.

corus.distribution.version The version of the distribution to which the process
belongs.

user.dir This is a standard Java system property which has been
kept “as is”; it identifies the root directory of a given
distribution (the directory where the distribution was
extracted). Subdirectories can be accessed relatively to
this root directory. Processes can conveniently resolve
directories and files by using this property's value –
which is convenient to retreive configuration files.

corus.process.dir This property indicates to the process its dedicated
directory, which gives it a “private” access to the file
system.This directory is cleaned up by the corus server
once the process has been killed. Processes that need
access to the file system in write mode should use this
directory (instead of the user.dir directory – see above
property).

corus.process.id Specifies the unique identifier of the process that is
started. This identifier is unique for the corus that
generated it, but not necessarily among multiple corus
servers (indeed, two different corus servers could
generate the same identifier).

corus.process.poll.interval Specifies the interval at which the process should poll
its corus server. This interval is given in seconds.
Fractions of a second can be specify using a decimal
number (i.e. the value “0.5” represents half a second).

corus.process.status.interval Specifies the interval at which the process should send
its status to the corus server. This interval is given in
seconds. Fractions of a second can be specify using a
decimal number (i.e. the value “0.5” represents half a
second).

corus.client.analysis.interval Specifies the interval at which the client module should
analyses its current state to know if it has to send some
commands to the corus server. This interval is given in
seconds. Fractions of a second can be specify using a
decimal number (i.e. the value “0.5” represents half a
second).

The above properties are passed to the executable that launches the
process as a space-separated list of options, according to the following
syntax – which follows the Java standard used to pass “system” properties
to a JVM from the command-line:

-DpropertyName1=”propertyValue1” -DpropertyName2=”propertyValue2”...

As can be seen, the following rules apply:

© www.sapia-oss.org 2003-2006 3

file:///home/yduchesne/dev/sapia/corus/tags/fs0004-maven/modules/server/doc/text/corus.client.analysis.interval
file:///home/yduchesne/dev/sapia/corus/tags/fs0004-maven/modules/server/doc/text/corus.process.poll.interval

• property names are preceded by a “D” identifier, which allows to
distinguish the properties from other command-line arguments;

• property names are separated from their value by an “=” character;

• property values are passed between quotes, which allows them to
contain whitespaces.

© www.sapia-oss.org 2003-2006 4

Requests and Responses

Communication between a corus server and its remote processes follows a
request/response pattern, where processes act as requestors and expect a
response in return; the expected response is one of the following:

• A list of pending commands targeted at the requesting process;

• an error;

• a simple acknowledgement if there were no commands in the process'
command queue (kept within the corus server), and if no error occurred.

There are three types of requests that processes emit: polling, status and
restart– which are explained below.

Polling

Once a process has been launched, it is responsible for polling its corus
server at the interval specified by the corus.process.poll.interval
property. The corus server internally keeps track of all processes launched
through it and will detect the ones that do not respect their polling
“contract”; the corus server will try to terminate a given delinquant process
by:

• sending a shutdown message to it ;

• if the above does not succeed, calling the OS' “kill” command – if this
applies.

Once a process as been forcefully shutdown, it is automatically restarted –
if the process' corresponding distribution configuration specifies so.

Status

At the interval specified by the corus.process.status.interval, the
remote process must provide its status. The status is a message that gives
information about the internal state of the process and, potentially, the
application(s) it holds. This status can then be accessed in a centralized
fashion through the corus server's client console, or programmatically by
connecting to the corus server.

If the status and polling intervals are the same, a remote process can send
its status as part of its poll message (which, in this case, will also contain
the status message).

© www.sapia-oss.org 2003-2006 5

Process-Initiated Restarts

A process can ask its Corus to restart it. In such a case, the process sends
to its corus a message requesting the restart to occur. The Corus will from
then on proceed as if the request had come from a user (through the client
console): it will send a shutdown message to the process and restart it with
the same parameters as before.

Termination

Upon receiving a shutdown message (either user-initiated, automatically
from its corus server, or after it has itself requested it), a remote process is
responsible for cleanly shutting down, releasing all resources it currently
holds. As part of the shutdown subprotocol, it is expected that remote
processes notify their corus server about the shutdown completion. For
each process that thus notifies its corus server, the latter will remove its
internal reference on the remote process – if the process does not notify its
corus about its shutdown completion, the corus will resort to an OS “kill”.

Protocol

As was briefly explained, Corus's interoperability relies on a
request/response scheme, where remote processes act as requestors.

Generalities

Communication between remote processes and corus servers is insured by
SOAP over HTTP. The general format of request messages must respect the
following rules:

• Requests specify a mandatory SOAP header;

• requests must contain a body that encapsulates child elements that
correspond to polling and/or status command.

In turn, responses obey the following rules:

• Responses specify a mandatory SOAP header;

© www.sapia-oss.org 2003-2006 6

• any error following a request is returned to the remote process in the
form of a SOAP fault;

• if no error occurs, the reponse's SOAP body contains the list of pending
commands targeted at the remote process;

• if no command is pending, then a simple acknowlegedment element is
given as part of the SOAP body.

Message Format

Requests and responses follow the SOAP 1.1 specification. The messages
per say are contained within the SOAP body. A message can contain one to
many command(s). The latter are directly specified as children of the SOAP
body. Each command within a message must be assigned a unique
identifier by the sending party.

Namespace

All corus-specific elements pertaining to interoperability are associated to
the following URI:

xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"

Requests

Header

All requests must specify a mandatory SOAP header, which itself holds a
Process element, as the example below demonstrates:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <CORUS-IOP:Process xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 corusPid="{corusProcessIdentifier}"
 requestId="{requestIdentifier}" />
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 ... message here ...
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Element Attribute Description Mandatory Children

Process Encapsulates information that allows to
uniquely identify the requesting process.

Yes -

© www.sapia-oss.org 2003-2006 7

Element Attribute Description Mandatory Children

corusPid The process' identifier – assigned by the
process' corus server. Corresponds to
the corus.process.id property.

Yes -

requestId The request ID is an arbitrary identifier
that the requesting process must assign
to the request message. This identifier is
sent back to the process in the request's
corresponding response. This can be
useful for debugging purposes (for
example by allowing to figure out which
request belongs to which response in log
files).

Yes -

Messages

Request specify their message in the SOAP body. A request message may
contain more than one command per body.

Poll

A remote process must poll its corus server at the interval specified to it by
its corus.process.poll.interval property. A “poll” signals to the corus
server that the process is functioning properly; it is similar in goal to a
heartbeat.

A poll message typically has a single empty poll element, But it can also
encapsulate an additional status element – see further below.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 ... (see header spec further above) ...
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <CORUS-IOP:Poll xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 commandId="{commandIdentifier}" />
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Element Attribute Description Mandatory Children

Poll Identifies the “poll” command. Yes -

commandI
d

The command identifier. Yes -

A status command allows a remote process to provide information about its
state – and the state of the applications it holds. The status command is
not mandatory: a corus server does not require that a process provides
status information. A process sends its status at the interval specified by its

© www.sapia-oss.org 2003-2006 8

file:///home/yduchesne/dev/sapia/corus/tags/fs0004-maven/modules/server/doc/text/corus.process.id

corus.process.status.interval property. To spare network resources, if
this interval and the polling interval are somewhat similar, a process can
send both status and poll messages in the same request. If such is the
case, the request must contain both the poll and status information as
sibling XML elements. The examples below demonstrate both uses.

Status

A status command:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 ... (see header spec further above) ...
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <CORUS-IOP:Status xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 commandId="{commandIdentifier}">
 <CORUS-IOP:Topic name="someTopic">
 <CORUS-IOP:Item name=”item1" value="item1_value" />
 <CORUS-IOP:Item name="item2" value="item2_value" />
 </CORUS-IOP:Topic>
 <CORUS-IOP:Topic name="someOtherTopic">
 <CORUS-IOP:Item name="item1" value="item1_value" />
 <CORUS-IOP:Item name="item2" value="item2_value" />
 </CORUS-IOP:Topic>
 </CORUS-IOP:Status>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Combined status and poll commands:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 ... (see header spec further above) ...
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <CORUS-IOP:Poll xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 commandId="{commandIdentifier}">

 <CORUS-IOP:Status xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 commandId="{commandIdentifier}">
 <CORUS-IOP:Topic name="someTopic">
 <CORUS-IOP:Item name="item1" value="item1_value" />
 <CORUS-IOP:Item name="item2" value="item2_value" />
 </CORUS-IOP:Topic>
 <CORUS-IOP:Topic name="someOtherTopic">
 <CORUS-IOP:Item name="item1" value="item1_value" />
 <CORUS-IOP:Item name="item2" value="item2_value" />
 </CORUS-IOP:Topic>
 </CORUS-IOP:Status>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Element Attribute Description Mandatory Children

Status Identifies the “status” command. Yes Topic

commandI
d

The command identifier. Yes -

© www.sapia-oss.org 2003-2006 9

Element Attribute Description Mandatory Children

Topic Allows to subdivide status information in
an ad-hoc fashion. A given topic has a
mandatory name attribute, whose value
is a character string that is in fact the
the topic's identification. This name is
arbitrary; the corus server does not
perform any validation on it. The only
restriction is that topic names cannot be
duplicated.

Yes Item

name The name of the topic Yes -

Item An item is specific information,
categorized in a given topic. An item
must have its name and value attributes
specified. The only restriction that
applies in the case of this element is that
there must be a single item element with
a given name per topic.

Yes -

name The unique name of this item Yes -

value The value of the item Yesy -

Restart

A remote process can ask its corus to restart it. In such a case, a restart
request is sent to the corus server. Upon receiving the restart request, the
server proceeds to the process' termination (as if that request had come
from a user, through the client console) and eventually restarts it. The
server replies with an ack to the request.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 ... (see header spec further above) ...
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <CORUS-IOP:Restart xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 commandId="{commandIdentifier}">
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Element Attribute Description Mandatory Children

Restart Sent by a process that “wishes” to be
restarted. Upon receiving the request,
the corus server proceeds to the
process's termination, and eventually
restarts it.

Yes -

commandI
d

The command identifier. Yes -

© www.sapia-oss.org 2003-2006 10

ConfirmShutdown

Following a shutdown command (sent as part of a response to a poll or
status request – see futher below for the shutdown message specification),
and before terminating, a remote process must confirm to its corus server
that it shut down properly. A shutdown confirmation message has a single
empty ConfirmShutdown element. Upon receiving the shutdown
confirmation, the server replies with an ack, and then proceeds to the
cleanup of the process directory. If the latter could not be deleted, the
corus server assumes that the process is still running and holding locks on
some resources; it will thus forcefully terminate the process through an OS
“kill”, and then proceed (again) to the process directory's cleanup.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 ... (see header spec further above) ...
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <CORUS-IOP:ConfirmShutdown

xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 commandId="{commandIdentifier}">
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Element Attribute Description Mandatory Children

Confirm
Shutdown

Tells to the corus server that the
requesting process has completed its
shutdown procedure and will incessantly
terminate.

Yes -

commandI
d

The command identifier. Yes -

Responses

Header

In a manner analogous to requests, responses must also specify a
mandatory SOAP header, which itself holds a Server element, as the
example below demonstrates:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <CORUS-IOP:Server xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 requestId="{requestIdentifier}"
 processingTime="{millis}" />
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 ... message here ...
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

© www.sapia-oss.org 2003-2006 11

Element Attribute Description Mandatory Children

Server Encapsulates information that allows to
uniquely identify the requesting process.

Yes -

requestId The identifier of the request to which the
response corresponds – has the same
value as the request identifier which was
originally passed as part of the request.

Yes -

processing
Time

The number of milliseconds that the
corus server took to process the request
(does not include transport time).

Yes -

Messages

Responses encapsulate their message(s) in their SOAP body. Responses
can consist of one of the following: an ack, a SOAP fault, one to many
commands.

Ack

An ack in sent back to the requesting process if one of the following
applies:

• no error occurred processing the request;

• no awaiting command was in the process' command queue within the
corus server.

An ack message is composed of a single, empty Ack element. An ack is not
considered as a command, and thus does not specify a command
identifier.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 ... (see header spec further above) ...
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <CORUS-IOP:Ack xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/" />
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Element Attribute Description Mandatory Children

Ack Identifies an acknowledgement. Yes -

© www.sapia-oss.org 2003-2006 12

Shutdown

A shutdown command is sent in a response under one of the following
conditions:

• the corus server has detected that the process has not polled it within
the predefined interval; it enqueues a shutdown command within the
process command queue; the next time the process polls, the command
is thus sent as part of the response;

• the process' shutdown has been explicitely ordered by a corus user
(through a “kill” command). In this case, the same as above ensues: the
command is enqueued within the corus server – in the process'
command queue – and sent back to the process as part of its next status
or poll request – see further above.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 ... (see header spec further above) ...
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <CORUS-IOP:Shutdown xmlns:CORUS-IOP="http://schemas.sapia.org/corus/interoperability/"
 commandId="{commandIdentifier}"
 requestor="{requestorActor}" />
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Element Attribute Description Mandatory Children

Shutdown Identifies a shutdown command. Yes -

commandI
d

The command identifier. Yes -

requestor Identifies the entity that requested that
shutdown command. The list of values
can be (bu not limites to): “corus” is
Corus shutdown the process because it
is unstable, “console” if an administrator
used the kill command to stop a given
process, “process” if the process
requested the shutdown using the
restart command.

Yes -

Fault

A SOAP fault is sent back to the requesting process if an error occurs while
processing the request. The fault message in this case is defined by the
SOAP specification and does not any command (from Corus's protocol
perspective); it therefore does not require a command identifier.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

© www.sapia-oss.org 2003-2006 13

 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>... some code ...</faultcode>
 <faultactor>... some actor ...</faultactor>
 <faultstring>... some message ...</faultstring>
 <detail>... some details ...</detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Element Description Mandatory Children

Fault Indicates that an error
occurred while processing the
request.

Yes faultcode, faultactor,
faultstring, detail

faultcode An arbitrary error code. Yes -

faultactor The actor that is responisble
of the error

Yes -

faultstring An arbitrary error message. Yes -

detail Details about the error – most
likely a Java stack trace.

No -

© www.sapia-oss.org 2003-2006 14

	Introduction
	Process Life-Cycle
	Launch
	Requests and Responses
	Polling
	Status
	Process-Initiated Restarts
	Termination

	Protocol
	Generalities
	Message Format
	Namespace
	Requests
	Header
	Messages
	Poll
	Status
	Restart
	ConfirmShutdown

	Responses
	Header
	Messages
	Ack
	Shutdown
	Fault

